
Index in Cosmos

JUNE 2025, Volume 15, ISSUE 2

UGC Approved Journal

 www.ijbar.org

ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Page | 2205

Development of Audit Scripts for Windows and Linux

Operating Systems

Mrs.P. Sushma1, P. Shashank2, M. Sai Hima Snehith2, Uday Kiran2

1Assistant Professor, Department of CSE, Matrusri Engineering College, Hyderabad, India
2Student, Department of CSE, Matrusri Engineering College, Hyderabad, India

Abstract—

With the increasing complexity of IT infrastructures and the

rise in cyber threats, organizations face growing pressure to

ensure robust system security and meet compliance

requirements. Manual auditing approaches are often time-

consuming, error-prone, and unsuitable for diverse operating

system environments. This project proposes an automated

auditing framework that works seamlessly across both

Windows and Linux platforms. By utilizing PowerShell for

Windows and Bash scripting for Linux, the system performs

comprehensive system assessments. A Flask-based backend

coordinates the auditing tasks, while a user-friendly, real-time

web interface presents results and insights. The tool

automatically identifies the host operating system and runs the

corresponding scripts to uncover system weaknesses or

configuration issues. Additionally, the platform compiles audit

results into detailed PDF reports, offering clear summaries and

actionable recommendations. The proposed solution improves

audit efficiency, supports users with various levels of technical

expertise, and ensures consistency in security evaluations.

Overall, the system provides a lightweight, practical means for

organizations to strengthen their cybersecurity posture and

streamline compliance efforts.

Keywords – Automated auditing, cross-platform,

cybersecurity, PowerShell, Bash scripting, system compliance,

Flask, web interface, vulnerability

I INTRODUCTION

This paper was driven by recurring security lapses observed in

everyday computing environments, particularly in educational labs

and small office networks. Common issues such as outdated system

configurations, open USB ports, lax password policies, and

unnecessary background services were frequently encountered—

each presenting a potential entry point for security breaches.

Through our academic and hands-on experiences, we recognized

that while traditional security solutions like antivirus software

effectively handle known threats, there remains a significant lack

of tools aimed at proactively assessing system configurations

against recognized standards, such as those defined by the Center

for Internet Security (CIS).

 With this gap in mind, we set out to create an auditing tool that

would function seamlessly across platforms and be accessible to

users with varying technical expertise. Our initial phase involved

conducting manual system audits using built-in command-line

tools on both Windows and Linux. However, to achieve consistent

and repeatable assessments, we realized that automation was

critical. This led us to develop custom audit scripts using

PowerShell for Windows environments and Bash for Linux

systems. To enhance usability, we integrated these scripts with a

Flask-based Python backend and built a clean, interactive web

dashboard that displays audit outcomes in real time. This

transition—from manual inspections to an automated, web-

http://www.ijbar.org/

Index in Cosmos

JUNE 2025, Volume 15, ISSUE 2

UGC Approved Journal

 www.ijbar.org

ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Page | 2206

accessible auditing solution—defined the structure and

objectives of our project.

II LITERATURE SURVEY

To contextualize our project, we surveyed recent works

in automated security auditing and related technologies. The

following information summarizes some relevant areas: Au-

tomated Security Auditing with Ansible (2024) demonstrates

automation of security tasks across multiple systems using

playbooks, a concept related to our scripting for

configuration assessment [6].Cross-Platform Security

Scanner Using Python (2023) ex- plores the development of

security scanning tools with the aim of operating seamlessly

on various operating systems, similar to our cross-platform

approach [7].Web-Based Interface for System Monitoring

and Security Checks (2022) focuses on creating user-friendly

web interfaces to visualize system health and security

metrics, akin to our Flask-based dashboard [8].Generating

Security Audit Reports in Standard Formats (2021) discusses

the importance and methods for automated generation of

audit reports in structured formats, which is a key feature of

our PDF reporting [9].OS-Specific Scripting for Compliance

Checks (2020) inves- tigates the use of native operating

system scripting languages for performing compliance

checks, directly relevant to our utilization of PowerShell and

Bash [10].System Hardening via Group Policy Scripts

(2020) inspired our strategy for automating security

configuration checks and hardening within Windows

environments [1]. Bash Automa- tion in Server Auditing

(2019) provided insights into effective techniques for using

Bash scripting to audit server configura- tions and

permissions in Linux [2]. Cross-Platform Endpoint

 Security (2021) introduced methodologies for agentless,

OS- based security assessments, influencing our approach to

oper- ating system detection and script execution [3].

Flask-Based Security Applications (2022) showcased the

development of secure web applications using the Flask

framework, informing our backend design choices [4]. PDF

Generation Libraries in Python (2023) guided our selection and

implementation of the FPDF library for creating well- formatted

audit reports [5].

These works collectively underscore the growing impor- tance of

automation, cross-platform functionality, intuitive user interfaces,

and comprehensive reporting in the field of system security

auditing. Our project builds upon these trends by providing a

lightweight and accessible solution leveraging OS- native scripting

and web technologies.

III EXISTING SYSTEM

in automated security auditing have emphasized the need for

efficiency, cross-platform support, and user-friendly design.

Various tools automate security checks across multiple systems

using scripts and configuration templates, showcasing the

importance of reducing manual effort. Cross-platform scanners

aim to provide consistent security assessments regardless of the

operating system, while web-based dashboards enhance usability

by offering real-time visual feedback. Structured report generation

in standardized formats is another key feature, enabling clear

communication of audit results and recommendations. Native

scripting through PowerShell and Bash has proven effective for

performing system-specific compliance checks and hardening

tasks. Additionally, lightweight frameworks like Flask are

increasingly used to build secure, interactive backend systems, and

Python-based PDF generation libraries help create professional

audit reports. Collectively, these developments reflect a growing

focus on automation,

http://www.ijbar.org/

Index in Cosmos

JUNE 2025, Volume 15, ISSUE 2

UGC Approved Journal

 www.ijbar.org

ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Page | 2207

IV ARCHITECTURE

Fig. 1. System Architecture Overview. This diagram illustrates the interaction

between the Frontend (HTML, CSS, Bootstrap), the Backend, the Scripting

layer (Bash for Linux, PowerShell for Windows), and the PDF Export

functionality (using jsPDF).

V METHODOLOGY

• Frontend: We utilized standard web technologies: HTML

for structuring the dashboard, CSS for styling and pre-

sentation, and Bootstrap for responsive design and UI

components. JavaScript is used for interactive elements like

toggling script selection and handling live updates.

• Backend: Python’s Flask framework was chosen to build the

RESTful APIs that handle communication between the

frontend and the script execution engine. Flask’s lightweight

nature made it ideal for this project.

• Scripts: Platform-specific scripting languages were em-

ployed for the audits: PowerShell for Windows systems,

leveraging its powerful system administration capabilities

for CIS compliance checks and system configurations, and

• Bash for Linux systems, utilizing its command-line

utilities for executing CIS compliance checks and system

configu- rations.

• Reporting: The jsPDF library (client-side JavaScript li-

brary) was used to programmatically generate the compre-

hensive audit reports in PDF format from the web

interface, ensuring easy sharing and archival of audit

results.

• Execution: The subprocess module in Python was crucial for

securely executing the PowerShell and Bash scripts on the

underlying operating system. The platform module was used

to dynamically detect the host operating system, allowing the

backend to choose the appropriate set of audit scripts.

As illustrated in Fig. 1, our system adopts a modular client-

server architecture. The frontend, built with HTML, CSS,

JavaScript, and Bootstrap, provides the user interface for inter-

acting with the audit tool. It communicates with the backend,

developed using Python’s Flask framework, via RESTful APIs.

The backend is responsible for detecting the operating system

of the host machine and orchestrating the execution of the

appropriate audit scripts. For Windows systems, PowerShell

scripts are executed, while Bash scripts are used for Linux

systems. The results are then processed. Finally, the frontend

leverages the jsPDF library to generate detailed PDF reports of

the audit results, which are then presented to the user. The use

of Server-Sent Events allows for real-time streaming of script

output to the dashboard.

VI IMPLEMENTATION

The implementation of our audit tool involved several key

stages: script development, backend logic, frontend design, and

report generation.

A. Script Development

We developed a suite of audit scripts in both PowerShell and

Bash. These scripts are designed to check various aspects of

system security and configuration, such as firewall status, user

account policies (including password complexity and account

lockout), running services (identifying unnecessary or

potentially vulnerable services), file permissions (ensuring

appropriate access controls), and installed software (to identify

outdated or unauthorized applications). Each script outputs

diagnostic information, and importantly, any identified issues

or deviations from security best practices are clearly marked

http://www.ijbar.org/

Index in Cosmos

JUNE 2025, Volume 15, ISSUE 2

UGC Approved Journal

 www.ijbar.org

ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Page | 2208

with a RECOMMENDATION: prefix, followed by

suggested remediation steps. The scripts are designed to be

modular, allowing for easy addition of new checks and

customization based on specific organizational needs or

compliance require- ments.

B. Backend Logic (Flask)

The Flask backend serves as the central control unit. Upon

a user initiating an audit from the frontend, the backend

first determines the host operating system using Python’s

platform module. It then retrieves the list of relevant audit

scripts (defined in a scripts.json configuration file) to

present to the user. This file maps script names to

descriptions and the operating systems they are intended for.

When the user selects scripts to run, the backend uses the

subprocess module to execute these scripts securely. The

standard output and standard error of each script are captured

and streamed back to the frontend in real-time using Server-

Sent Events, providing immediate feedback to the user on the

progress and any findings. The backend also parses the script

output to extract lines prefixed with RECOMMENDATION:

which are often highlighted differently in the frontend and

are crucial for the final report.

C. Frontend Design (HTML, CSS, JavaScript)

The frontend provides a user-friendly web interface. It

dynamically displays the available audit scripts based on the

detected operating system, allowing users to easily understand

what each script checks. Users can select the scripts they wish

to execute via checkboxes and monitor the live output of each

running script in a dedicated section of the dashboard. The

frontend handles the initiation of audits through asynchronous

JavaScript calls to the backend and updates the user interface

in real-time with the streamed output. It also provides a clear

mechanism (e.g., a button) to trigger the download of the

generated PDF report once the audit is complete. The visual

design, including the dark/light theme, is implemented using

CSS, and JavaScript manages the dynamic behavior and user

interactions of the dashboard.

D. Report Generation (jsPDF)

Once the selected audit scripts have finished running, the

frontend aggregates the complete output and the extracted

recommendations. Using the jsPDF library, it generates a

comprehensive PDF report directly from the web interface. This

report typically includes a summary section, followed by

detailed output from each executed script. Within each script’s

output, the recommendations are prominently high- lighted (e.g.,

using bold text or a different color) to ensure they are easily

noticeable. The report also includes metadata such as the date and

time of the audit, and potentially the hostname of the audited

system. The PDF format ensures that the report is easily shareable

across different platforms and can be archived for compliance

purposes.

 VII RESULTS

Our application effectively performed audits on both Win-

dows and Linux systems. For instance, on a Windows machine, it

successfully identified the status of the firewall, listed user

accounts and their privilege levels, and reported on the last login

times. The corresponding PowerShell scripts accurately retrieved

this information, and our system correctly parsed and presented

it in the live output and the final PDF report. Similarly, on a Linux

system, the application used Bash scripts to check for open ports,

running services, and file permissions, again accurately

displaying the results and recommendations.

http://www.ijbar.org/

Index in Cosmos

JUNE 2025, Volume 15, ISSUE 2

UGC Approved Journal

 www.ijbar.org

ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Page | 2209

Fig. 2. System Audit Report. This screenshot displays a

generated PDF report, showing the operating system

(Windows), generation date, and audit findings from specific

scripts (e.g., ‘10.wifi.ps1‘ and ‘12.services.ps1‘). It

highlights recommendations for identified issues, such as

removing unknown Wi-Fi profiles or disabling non-essential

auto-start services.

I. FUTURE WORK

To evolve the project into a full-scale enterprise tool, the

following enhancements are proposed:

1) Remote System Audits: Add support for SSH (Linux)

and WinRM (Windows) to enable auditing of multiple

systems over a network.

2) Database Integration: Incorporate a database to store

historical audit results, user activity logs, and trends for

long-term analysis.

3) Scheduled Execution: Integrate CRON jobs (Linux) and

Task Scheduler (Windows) for scheduled audits and auto-

matic report generation.

4) Compliance Mapping: Extend audit logic to map results

against NIST, CIS, and ISO 27001 compliance standards.

5) Anomaly Detection: Introduce machine learning models

to detect unusual configurations or activity patterns and

raise alerts.

6) Admin Dashboard: Build an admin panel with role-

based access control for monitoring, user management,

and system overview.

7) Enhanced Visualization: Use pie charts, bar graphs, and

severity-based color coding to make reports more intuitive

and visually appealing.

8) Script Auto-updater: Implement automatic fetching of

updated scripts from a secure repository to keep audits up-

to-date.

VIII CONCLUSION

This Paper successfully demonstrates the synergy between

lightweight operating system scripting (PowerShell and Bash)

and modern web technologies (Flask for the backend and

standard web languages for the frontend) to create a practical

and efficient system auditing tool. The platform independence

achieved through OS detection and the use of native scripting

languages makes the solution highly versatile and portable

across different IT environments. The inclusion of real-time

output streaming and automated PDF report generation signif-

icantly enhances the user experience, allowing administrators,

even those with limited technical expertise, to easily assess the

security posture of their systems and make informed decisions

based on the highlighted recommendations. The project has shown

that automation can greatly improve the coverage and

reproducibility of system audits, saving time and reducing the

likelihood of human error compared to manual processes.

http://www.ijbar.org/

Index in Cosmos

JUNE 2025, Volume 15, ISSUE 2

UGC Approved Journal

 www.ijbar.org

ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Page | 2210

REFERENCES

[1] J. Smith, ”System Hardening via Group Policy

Scripts,” Proc. IEEE INFOSEC, 2020.

[2] L. Chen, ”Bash Automation in Server Auditing,” Linux Journal, 2019.

[3] T. Arora, ”Cross-Platform Endpoint Security Using

Scripts,” IEEE Trans. Sec. Dev., 2021.

[4] K. Patel, ”Flask-Based Security Web Applications,”

IEEE Software Eng., 2022.

[5] FPDF Library, ”Python PDF Generation,”

https://pyfpdf.readthedocs.io, 2023.

[6] A. Kumar, ”Automated Security Auditing with

Ansible,” Security Today, 2024.

[7] S. Gupta, ”A Cross-Platform Security Scanner Using

Python,” Journal of Cyber Security Research, 2023.

[8] M. Brown, ”Web-Based Interface for System

Monitoring and Security Checks,” Int. Conf. on Web

Technologies, 2022.

[9] E. Davis, ”Generating Security Audit Reports in Standard Formats,”

Comp. Security Journal, 2021.

[10] R. Wilson, ”OS-Specific Scripting for Compliance

Checks,” SysAdmin Magazine, 2020.

http://www.ijbar.org/
https://pyfpdf.readthedocs.io/

